Explicit methods for integrating stiff Cauchy problems

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Explicit methods for stiff stochastic differential equations

Multiscale differential equations arise in the modeling of many important problems in the science and engineering. Numerical solvers for such problems have been extensively studied in the deterministic case. Here, we discuss numerical methods for (mean-square stable) stiff stochastic differential equations. Standard explicit methods, as for example the EulerMaruyama method, face severe stepsize...

متن کامل

A class of explicit one-step methods of order two for stiff problems

In this paper we introduce a new class of explicit one-step methods of order 2 that can be used for solving stiff problems. This class constitutes a generalization of the two-stage explicit Runge-Kutta methods, with the property of having an A-stability region that varies during the integration in accordance with the accuracy requirements. Some numerical experiments on classical stiff problems ...

متن کامل

Explicit stabilized integration of stiff determinisitic or stochastic problems

Explicit stabilized methods for stiff ordinary differential equations have a long history. Proposed in the early 1960s and developed during 40 years for the integration of stiff ordinary differential equations, these methods have recently been extended to implicit-explicit or partitioned type methods for advection-diffusion-reaction problems, and to efficient explicit solvers for stiff mean-squ...

متن کامل

Iterative Operator-Splitting Methods for Stiff Problems in Complex Applications

In this paper we deal with the Landau-LifshitzGilbert equation which describes dynamics of ferromagnetism. Based on the strong nonlinearities a stabilised discretisation method is necessary to skip the time-step restriction. In this paper we propose a implicit full discrete scheme with an embedded operatorsplitting method.

متن کامل

Multi-adaptive Galerkin methods for ODEs V: Stiff problems

We develop the methodology of multi-adaptive time-stepping for stiff problems. The new algorithm is based on adaptively stabilized fixed point iteration on time slabs and a new method for the recursive construction of time slabs. Numerical examples are given for a series of well-known stiff and non-stiff test problems.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Доклады Академии наук

سال: 2019

ISSN: 0869-5652

DOI: 10.31857/s0869-56524855553-557